Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.

Identifieur interne : 001145 ( Main/Exploration ); précédent : 001144; suivant : 001146

Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.

Auteurs : E J Stewart [États-Unis] ; F. Aslund ; J. Beckwith

Source :

RBID : pubmed:9755155

Descripteurs français

English descriptors

Abstract

Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.

DOI: 10.1093/emboj/17.19.5543
PubMed: 9755155
PubMed Central: PMC1170883


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.</title>
<author>
<name sortKey="Stewart, E J" sort="Stewart, E J" uniqKey="Stewart E" first="E J" last="Stewart">E J Stewart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9755155</idno>
<idno type="pmid">9755155</idno>
<idno type="doi">10.1093/emboj/17.19.5543</idno>
<idno type="pmc">PMC1170883</idno>
<idno type="wicri:Area/Main/Corpus">001125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001125</idno>
<idno type="wicri:Area/Main/Curation">001125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001125</idno>
<idno type="wicri:Area/Main/Exploration">001125</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.</title>
<author>
<name sortKey="Stewart, E J" sort="Stewart, E J" uniqKey="Stewart E" first="E J" last="Stewart">E J Stewart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
</author>
<author>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkaline Phosphatase (metabolism)</term>
<term>Cell Compartmentation (MeSH)</term>
<term>Cytoplasm (metabolism)</term>
<term>Disulfides (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Escherichia coli Proteins (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (deficiency)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Compartimentation cellulaire (MeSH)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phosphatase alcaline (métabolisme)</term>
<term>Protéines Escherichia coli (MeSH)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Thioredoxin-disulfide reductase (déficit)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alkaline Phosphatase</term>
<term>Disulfides</term>
<term>Membrane Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
<term>Disulfures</term>
<term>Escherichia coli</term>
<term>Phosphatase alcaline</term>
<term>Protéines membranaires</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Compartmentation</term>
<term>Escherichia coli Proteins</term>
<term>Genes, Bacterial</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Compartimentation cellulaire</term>
<term>Gènes bactériens</term>
<term>Oxydoréduction</term>
<term>Protéines Escherichia coli</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9755155</PMID>
<DateCompleted>
<Year>1998</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>17</Volume>
<Issue>19</Issue>
<PubDate>
<Year>1998</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J</ISOAbbreviation>
</Journal>
<ArticleTitle>Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>5543-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>E J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aslund</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beckwith</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM41883</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491202">trxC protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.1</RegistryNumber>
<NameOfSubstance UI="D000469">Alkaline Phosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000469" MajorTopicYN="N">Alkaline Phosphatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002451" MajorTopicYN="N">Cell Compartmentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="Y">Escherichia coli Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1998</Year>
<Month>10</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1998</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1998</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9755155</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/17.19.5543</ArticleId>
<ArticleId IdType="pmc">PMC1170883</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Bacteriol. 1983 Jan;153(1):27-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6336734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Jun 3;1307(1):13-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8652661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Jul;167(1):160-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3522543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Oct;83(20):7643-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3463991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Nov 15;261(32):14997-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3533930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Dec;84(23):8525-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3317413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1989 Mar;53(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2540407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12249-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Apr;172(4):1923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2180911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Nov 1;67(3):581-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1934062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Aug 30;105(1):17-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1937005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Dec;173(23):7719-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1938970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 5;267(13):9047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 May 15;267(14):9895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Mar;12(3):879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8458344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Apr;133(4):763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8462840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Sep 21;32(37):9701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8373774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8259521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7777559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 20;270(5235):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jun 28;271(26):15307-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8662944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Nov 15;24(22):4420-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8948633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Mar 7;272(10):6174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9045630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 22;272(34):21084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30780-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 5;272(49):30841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Mar 13;279(5357):1718-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10751-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1998;32:163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1984 Nov 5;179(3):497-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6210370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aslund, F" sort="Aslund, F" uniqKey="Aslund F" first="F" last="Aslund">F. Aslund</name>
<name sortKey="Beckwith, J" sort="Beckwith, J" uniqKey="Beckwith J" first="J" last="Beckwith">J. Beckwith</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Stewart, E J" sort="Stewart, E J" uniqKey="Stewart E" first="E J" last="Stewart">E J Stewart</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001145 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001145 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9755155
   |texte=   Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9755155" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020